(编辑:jimmy 日期: 2025/1/12 浏览:2)
import pandas as pd import numpy as np #Create a DataFrame df1 = { 'Subject':['semester1','semester2','semester3','semester4','semester1', 'semester2','semester3'], 'Score':[62,47,55,74,31,77,85]} df2 = { 'Subject':['semester1','semester2','semester3','semester4'], 'Score':[90,47,85,74]} df1 = pd.DataFrame(df1,columns=['Subject','Score']) df2 = pd.DataFrame(df2,columns=['Subject','Score']) print(df1) print(df2)
运行结果:
intersected_df = pd.merge(df1, df2, how='inner') print(intersected_df)
也可以指定求交集的列:
intersected_df = pd.merge(df1, df2, on=['Subject'], how='inner') print(intersected_df)
df2-df1:
set_diff_df = pd.concat([df2, df1, df1]).drop_duplicates(keep=False) print(set_diff_df)
df1-df2:
set_diff_df = pd.concat([df1, df2, df2]).drop_duplicates(keep=False) print(set_diff_df)
另一种求差集的方法是:
以df1-df2为例:
df1 = df1.append(df2) df1 = df1.append(df2) set_diff_df = df1.drop_duplicates(subset=['Subject', 'Score'],keep=False) print(set_diff_df)
得到的df1-df2结果是一样的: