(编辑:jimmy 日期: 2025/1/12 浏览:2)
01.简介
当我们使用的鱼眼镜头视角大于160°时,OpenCV中用于校准镜头“经典”方法的效果可能就不是和理想了。即使我们仔细遵循OpenCV文档中的步骤,也可能会得到下面这个奇奇怪怪的照片:
如果小伙伴也遇到了类似情况,那么这篇文章可能会对大家有一定的帮助。
从3.0版开始,OpenCV包含了cv2.fisheye可以很好地处理鱼眼镜头校准的软件包。但是,该模块没有针对读者的相关的教程。
02.相机参数获取
校准镜头其实只需要下面2个步骤。
计算K和D
我们先将这些图片保存在JPG文件夹中。
现在我们只需要将此Python脚本片段复制到calibrate.py先前保存这些图像的文件夹中的文件中,就可以对其进行命名。
import cv2 assert cv2.__version__[0] == '3', 'The fisheye module requires opencv version >= 3.0.0' import numpy as np import os import glob CHECKERBOARD = (6,9) subpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1) calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32) objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2) _img_shape = None objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. images = glob.glob('*.jpg') for fname in images: img = cv2.imread(fname) if _img_shape == None: _img_shape = img.shape[:2] else: assert _img_shape == img.shape[:2], "All images must share the same size." gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chess board corners ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE) # If found, add object points, image points (after refining them) if ret == True: objpoints.append(objp) cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria) imgpoints.append(corners) N_OK = len(objpoints) K = np.zeros((3, 3)) D = np.zeros((4, 1)) rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)] tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)] rms, _, _, _, _ = cv2.fisheye.calibrate( objpoints, imgpoints, gray.shape[::-1], K, D, rvecs, tvecs, calibration_flags, (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6) ) print("Found " + str(N_OK) + " valid images for calibration") print("DIM=" + str(_img_shape[::-1])) print("K=np.array(" + str(K.tolist()) + ")") print("D=np.array(" + str(D.tolist()) + ")")
运行python calibrate.py。如果一切顺利,脚本将输出如下内容:
Found 36 images for calibration DIM=(1600, 1200) K=np.array([[781.3524863867165, 0.0, 794.7118000552183], [0.0, 779.5071163774452, 561.3314451453386], [0.0, 0.0, 1.0]]) D=np.array([[-0.042595202508066574], [0.031307765215775184], [-0.04104704724832258], [0.015343014605793324]])
03.图像畸变矫正
获得K和D后,我们可以对以下情况获得的图像进行失真矫正:我们需要取消失真的图像与校准期间捕获的图像具有相同的尺寸。也可以将边缘周围的某些区域裁剪掉,来保证使未失真图像的整洁。通过undistort.py使用以下python代码创建文件:
DIM=XXX K=np.array(YYY) D=np.array(ZZZ) def undistort(img_path): img = cv2.imread(img_path) h,w = img.shape[:2] map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, DIM, cv2.CV_16SC2) undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) cv2.imshow("undistorted", undistorted_img) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': for p in sys.argv[1:]: undistort(p)
现在运行python undistort.py file_to_undistort.jpg。
矫正前
矫正后
如果大家仔细观察,可能会注意到一个问题:原始图像中的大部分会在此过程中被裁剪掉。例如,图像左侧的橙色RC汽车只有一半的车轮保持在未变形的图像中。实际上,原始图像中约有30%的像素丢失了。小伙伴们可以思考思考如果我们想找回丢失的像素该这么办呢?