总结python 三种常见的内存泄漏场景

(编辑:jimmy 日期: 2025/1/12 浏览:2)

概要

不要以为 Python 有自动垃圾回收就不会内存泄漏,本着它有“垃圾回收”我有“垃圾代码”的精神,现在总结一下三种常见的内存泄漏场景。

无穷大导致内存泄漏

如果把内存泄漏定义成只申请不释放,那么借着 Python 中整数可以无穷大的这个特点,我们一行代码就可以完成内存泄漏了。

i = 1024 ** 1024 ** 1024

循环引用导致内存泄漏

引用记数器 是 Python 垃圾回收机制的基础,如果一个对象的引用数量不为 0 那么是不会被垃圾回收的,我们可以通过 sys.getrefcount 来得到给定对象的引用数量。

In [1]: import sys                               

In [2]: a = {'name':'tom','age':16}                       

In [3]: sys.getrefcount(a)  # 由于 getrefcount 内部也会临时的引用 a 所以,使得计数器的值变成了 2 。               
Out[3]: 2

In [4]: b = a                                  

In [5]: sys.getrefcount(a)                           
Out[5]: 3

先来看一个循环引用的场景。

#!/usr/bin/evn python3

import sys
import time
import threading


class Person(object):
  free_lock = threading.Condition()

  def __init__(self, name: str = ""):
    """
    Parameters
    ----------
    name: str
      姓名

    best_friend: str
      最要好的朋友名
    """
    self._name = name
    self._best_friend = None

  @property
  def best_friend(self, person: "Person"):
    return self._best_friend

  @best_friend.setter
  def best_friend(self, friend: "Person"):
    self._best_friend = friend

  def __str__(self):
    """
    """
    return self._name

  def __del__(self):
    """
    """
    self.free_lock.acquire()
    print(f"{self._name} 要 GG 了,现在释放它的内存空间。")
    sys.stderr.flush()
    self.free_lock.release()


def mem_leak():
  """
  循环引用导致内存泄漏
  """
  zhang_san = Person(name='张三')
  li_si = Person("李四")

  # 构造出循环引用
  # 李四的好友是张三
  li_si.best_friend = zhang_san
  # 张三的好友是李四
  zhang_san.best_friend = li_si


if __name__ == "__main__":
  for i in range(3):
    time.sleep(0.01)
    print(f"{i}")
    mem_leak()

  print("mem_leak 执行完成了.")
  time.sleep(5)

运行效果。

python3 main.py
0
1
2
mem_leak 执行完成了.
张三 要 GG 了,现在释放它的内存空间。
李四 要 GG 了,现在释放它的内存空间。
张三 要 GG 了,现在释放它的内存空间。
李四 要 GG 了,现在释放它的内存空间。
张三 要 GG 了,现在释放它的内存空间。
李四 要 GG 了,现在释放它的内存空间

由于循环引用的存在,使得 mem_leak 函数就行执行完了其内部的局部变量引用计数器也不为 0 ,所以内存得不到及时的释放。释放这部分内存有两个途径 1、 被 Python 内部的循环检测机制发现了; 2、进程退出前的集中释放。

tracemalloc 可以在一定程序上帮我们发现问题,在此就不讲怎么用了,我们直接上解决方案。Python 为程序员提供了弱引用,通过这种方式可以不增加对象引用计数器的数值,这成为了我们打破循环引用的一种手段。

In [1]: import sys                               

In [2]: import weakref                             

In [3]: from main import Person                         

In [4]: tom = Person('tom')                           

In [5]: sys.getrefcount(tom)                          
Out[5]: 2

In [6]: p = weakref.ref(tom)                          

In [7]: sys.getrefcount(tom)  # 弱引用不会增加计数器的值                        
Out[7]: 2

现在使用 weakref 技术来改造我们的代码。

#!/usr/bin/evn python3


import sys
import time
import weakref
import threading


class Person(object):
  free_lock = threading.Condition()

  def __init__(self, name: str = ""):
    """
    Parameters
    ----------
    name: str
      姓名

    best_friend: str
      最要好的朋友名
    """
    self._name = name
    self._best_friend = None

  @property
  def best_friend(self, person: "Person"):
    return self._best_friend

  @best_friend.setter
  def best_friend(self, friend: "Person"):
    self._best_friend = weakref.ref(friend)

  def __str__(self):
    """
    """
    return self._name

  def __del__(self):
    """
    """
    self.free_lock.acquire()
    print(f"{self._name} 要 GG 了,现在释放它的内存空间。")
    sys.stderr.flush()
    self.free_lock.release()


def mem_leak():
  """
  循环引用导致内存泄漏
  """
  zhang_san = Person(name='张三')
  li_si = Person("李四")

  # 构造出循环引用
  # 李四的好友是张三
  li_si.best_friend = zhang_san
  # 张三的好友是李四
  zhang_san.best_friend = li_si


if __name__ == "__main__":
  for i in range(3):
    time.sleep(0.01)
    print(f"{i}")
    mem_leak()

  print("mem_leak 执行完成了.")
  time.sleep(5)

运行效果。

python3 main.py
0
张三 要 GG 了,现在释放它的内存空间。
李四 要 GG 了,现在释放它的内存空间。
1
张三 要 GG 了,现在释放它的内存空间。
李四 要 GG 了,现在释放它的内存空间。
2
张三 要 GG 了,现在释放它的内存空间。
李四 要 GG 了,现在释放它的内存空间。
mem_leak 执行完成了.

可以看到现在一旦函数执行完成,其内部的局部变量的内存就会得到释放,非常的及时。

外面库导致内存泄漏

这种情况我也只遇到过一次,之前 mysql-connector-python 的内存泄漏,导致我的程序跑着跑着占用的内存就越来越大;最后我们返的 C 语言扩展禁用之后就没有问题了。

以上就是总结python 三种常见的内存泄漏场景的详细内容,更多关于python 内存泄漏的资料请关注其它相关文章!