在tensorflow实现直接读取网络的参数(weight and bias)的值

(编辑:jimmy 日期: 2025/1/15 浏览:2)

训练好了一个网络,想要查看网络里面参数是否经过BP算法优化过,可以直接读取网络里面的参数,如果一直是随机初始化的值,则证明训练代码有问题,需要改。

下面介绍如何直接读取网络的weight 和 bias。

(1) 获取参数的变量名。可以使用一下函数获取变量名:

def vars_generate1(self,scope_name_var): return [var for var in tf.global_variables() if scope_name_var in var.name ]

输入你想要读取的变量的一部分的名称(scope_name_var),然后通过这个函数返回一个List,里面是所有含有这个名称的变量。

(2) 利用session读取变量的值:

def get_weight(self):
 full_connect_variable = self.vars_generate1("pred_network/full_connect/l5_conv")
 with tf.Session() as sess:
  sess.run(tf.global_variables_initializer()) ##一定要先初始化变量
  print(sess.run(full_connect_variable[0]))

之后如果想要看参数随着训练的变化,你可以将这些参数保存到一个txt文件里面查看。

补充知识:如何在 PyTorch 中设定学习率衰减(learning rate decay)

在tensorflow实现直接读取网络的参数(weight and bias)的值

很多时候我们要对学习率(learning rate)进行衰减,下面的代码示范了如何每30个epoch按10%的速率衰减:

def adjust_learning_rate(optimizer, epoch):
 """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
 lr = args.lr * (0.1 ** (epoch // 30))
 for param_group in optimizer.param_groups:
  param_group['lr'] = lr

什么是param_groups"htmlcode">

# 有两个`param_group`即,len(optim.param_groups)==2
optim.SGD([
    {'params': model.base.parameters()},
    {'params': model.classifier.parameters(), 'lr': 1e-3}
   ], lr=1e-2, momentum=0.9)
 
#一个参数组
optim.SGD(model.parameters(), lr=1e-2, momentum=.9)

以上这篇在tensorflow实现直接读取网络的参数(weight and bias)的值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。