(编辑:jimmy 日期: 2025/1/15 浏览:2)
首先看官网的DataFrame.plot( )函数
DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None,figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, xerr=None,secondary_y=False, sort_columns=False, **kwds)
参数详解如下:
Parameters: x : label or position, default None#指数据框列的标签或位置参数 y : label or position, default None kind : str ‘line' : line plot (default)#折线图 ‘bar' : vertical bar plot#条形图 ‘barh' : horizontal bar plot#横向条形图 ‘hist' : histogram#柱状图 ‘box' : boxplot#箱线图 ‘kde' : Kernel Density Estimation plot#Kernel 的密度估计图,主要对柱状图添加Kernel 概率密度线 ‘density' : same as ‘kde' ‘area' : area plot#不了解此图 ‘pie' : pie plot#饼图 ‘scatter' : scatter plot#散点图 需要传入columns方向的索引 ‘hexbin' : hexbin plot#不了解此图 ax : matplotlib axes object, default None#**子图(axes, 也可以理解成坐标轴) 要在其上进行绘制的matplotlib subplot对象。如果没有设置,则使用当前matplotlib subplot**其中,变量和函数通过改变figure和axes中的元素(例如:title,label,点和线等等)一起描述figure和axes,也就是在画布上绘图。 subplots : boolean, default False#判断图片中是否有子图 Make separate subplots for each column sharex : boolean, default True if ax is None else False#如果有子图,子图共x轴刻度,标签 In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure! sharey : boolean, default False#如果有子图,子图共y轴刻度,标签 In case subplots=True, share y axis and set some y axis labels to invisible layout : tuple (optional)#子图的行列布局 (rows, columns) for the layout of subplots figsize : a tuple (width, height) in inches#图片尺寸大小 use_index : boolean, default True#默认用索引做x轴 Use index as ticks for x axis title : string#图片的标题用字符串 Title to use for the plot grid : boolean, default None (matlab style default)#图片是否有网格 Axis grid lines legend : False/True/'reverse'#子图的图例,添加一个subplot图例(默认为True) Place legend on axis subplots style : list or dict#对每列折线图设置线的类型 matplotlib line style per column logx : boolean, default False#设置x轴刻度是否取对数 Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False#同时设置x,y轴刻度是否取对数 Use log scaling on both x and y axes xticks : sequence#设置x轴刻度值,序列形式(比如列表) Values to use for the xticks yticks : sequence#设置y轴刻度,序列形式(比如列表) Values to use for the yticks xlim : 2-tuple/list#设置坐标轴的范围,列表或元组形式 ylim : 2-tuple/list rot : int, default None#设置轴标签(轴刻度)的显示旋转度数 Rotation for ticks (xticks for vertical, yticks for horizontal plots) fontsize : int, default None#设置轴刻度的字体大小 Font size for xticks and yticks colormap : str or matplotlib colormap object, default None#设置图的区域颜色 Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional #图片柱子 If True, plot colorbar (only relevant for ‘scatter' and ‘hexbin' plots) position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) layout : tuple (optional) #布局 (rows, columns) for the layout of the plot table : boolean, Series or DataFrame, default False #如果为正,则选择DataFrame类型的数据并且转换匹配matplotlib的布局。 If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See Plotting with Error Bars for detail. xerr : same types as yerr. stacked : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot. sort_columns : boolean, default False # 以字母表顺序绘制各列,默认使用前列顺序 secondary_y : boolean or sequence, default False ##设置第二个y轴(右y轴) Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend kwds : keywords Options to pass to matplotlib plotting method Returns:axes : matplotlib.AxesSubplot or np.array of them
1、画图图形
import pandas as pd from pandas import DataFrame,Series df = pd.DataFrame(np.random.randn(4,4),index = list('ABCD'),columns=list('OPKL')) df Out[4]: O P K L A -1.736654 0.327206 -1.000506 1.235681 B 1.216879 0.506565 0.889197 -1.478165 C 0.091957 -2.677410 -0.973761 0.123733 D -1.114622 -0.600751 -0.159181 1.041668
注意一下散点图scatter是需要传入两个Y的columns参数的:
传入x,y参数
同时画多个子图,可以设置 subplot = True
2、注意事项:
- 在画图时,要注意首先定义画图的画布:fig = plt.figure( )
- 然后定义子图ax ,使用 ax= fig.add_subplot( 行,列,位置标)
- 当上述步骤完成后,可以用 ax.plot()函数或者 df.plot(ax = ax)
- 在jupternotebook 需要用%定义:%matplotlib notebook;如果是在脚本编译器上则不用,但是需要一次性按流程把代码写完;
- 结尾时都注意记录上plt.show()