(编辑:jimmy 日期: 2025/1/15 浏览:2)
Matplotlib简介
Matplotlib是非常强大的python画图工具
Matplotlib可以画图线图、散点图、等高线图、条形图、柱形图、3D图形、图形动画等。
Matplotlib安装
pip3 install matplotlib#python3
双X轴的
可以理解为共享y轴
ax1=ax.twiny() ax1=plt.twiny()
双Y轴的
可以理解为共享x轴
ax1=ax.twinx() ax1=plt.twinx()
自动生成一个例子
x = np.arange(0., np.e, 0.01) y1 = np.exp(-x) y2 = np.log(x) fig = plt.figure() ax1 = fig.add_subplot(111) ax1.plot(x, y1) ax1.set_ylabel('Y values for exp(-x)') ax1.set_title("Double Y axis") ax2 = ax1.twinx() # this is the important function ax2.plot(x, y2, 'r') ax2.set_xlim([0, np.e]) ax2.set_ylabel('Y values for ln(x)') ax2.set_xlabel('Same X for both exp(-x) and ln(x)') plt.show()
例子:画了一个双y轴坐标的图表
# -*- coding: utf-8 -*- #调用包 import pandas as pd import numpy as np import matplotlib.pyplot as plt #读取文件 io=r'E:\工作\专项\白骑士数据验证\白骑士数据汇总表.xlsx' yinka=pd.read_excel(io,sheet_name='YINKA_sample') bqs=pd.read_excel(io,sheet_name='BQS_result') yinka_bqs=pd.merge(yinka,bqs,left_on='no',right_on='no',how='inner') #绘图 fig,ax=plt.subplots(1,1,figsize=(20, 300)) ax.grid() #画网格 x=total.index-1 #为什么+1,因为对不齐,所以使用时根据情况编写 y=total['var1'] ax.plot(x,y,'k--o',alpha=0.5) #画折线图 ax.set_xlim([0,16]) #设置x轴的取值范围 这个可以让x轴与y轴的起点一致 ax.set_xticks(np.arange(0,16)) #设置x轴的刻度范围 ax.set_xticklabels(np.arange(0,16),rotation=30) #设置x轴上的刻度 ax.set_ylim([0,1800]) #同理y轴数值范围 ax.set_yticks(range(0,1800,300))#设置y轴的刻度范围 ax.set_yticklabels(range(0,1800,300))#设置y轴上的刻度 ax.legend(loc='upper left') #设置ax子图的图例(legend) #新知识点 for a,b in zip(x,y): #设置注释 zip函数是对应关系 ax.text(a,b,b,ha='center',va='bottom',fontsize=15) #重点 ax1=ax.twinx() #这个是能够实现双y轴的重点,共享x轴;还有一种是双x轴的图表换成ax.twiny() y1=total[['adopt','reject']] y1.plot.bar(ax=ax1,alpha=0.5) #这个是matplotlib中条形图的绘制方法,如果使用seaborn绘制方法使用sns.barplot()函数,需要调整很多细节 #这里只设置了y轴的刻度,x轴的刻度设置了一下偶尔会出现失败,值得注意的是要将数据对齐 ax1.set_ylim([0,1800]) ax1.set_yticks(range(0,1800,300)) ax1.set_yticklabels(range(0,1800,300)) for e,f,w in zip(data_.index,data_[0],data_[1]): ax1.text(e-1,f,f,ha='center',va='bottom',fontsize=10,color='b') ax1.text(e-1,w,w,ha='center',va='bottom',fontsize=10,color='g') ax1.legend(loc='best') plt.show() #养成习惯这个最好写一下# #保存图片 plt.savefig('path') #图表输出到本地
结果显示:
总结