(编辑:jimmy 日期: 2025/1/9 浏览:2)
CAS算法(compare and swap)
CAS算法是一种有名的无锁算法。无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。CAS算法涉及到三个操作数
当且仅当 V 的值等于 A时,CAS通过原子方式用新值B来更新V的值,否则不会执行任何操作(比较和替换是一个原子操作)。一般情况下是一个自旋操作,即不断的重试。
自旋锁
自旋锁是指当一个线程在获取锁的时候,如果锁已经被其他线程获取,那么该线程将循环等待,然后不断地判断是否能够被成功获取,知直到获取到锁才会退出循环。
获取锁的线程一直处于活跃状态,但是并没有执行任何有效的任务,使用这种锁会造成 busy-waiting 。
它是为实现保护共享资源而提出的一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能由一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,“自旋”一词就是因此而得名。
golang实现自旋锁
type spinLock uint32 func (sl *spinLock) Lock() { for !atomic.CompareAndSwapUint32((*uint32)(sl), 0, 1) { runtime.Gosched() } } func (sl *spinLock) Unlock() { atomic.StoreUint32((*uint32)(sl), 0) } func NewSpinLock() sync.Locker { var lock spinLock return &lock }
可重入的自旋锁和不可重入的自旋锁
文章开始的时候的那段代码,仔细分析一下就可以看出,它是不支持重入的,即当一个线程第一次已经获取到了该锁,在锁释放之前又一次重新获取该锁,第二次就不能成功获取到。由于不满足CAS,所以第二次获取会进入while循环等待,而如果是可重入锁,第二次也是应该能够成功获取到的。
而且,即使第二次能够成功获取,那么当第一次释放锁的时候,第二次获取到的锁也会被释放,而这是不合理的。
为了实现可重入锁,我们需要引入一个计数器,用来记录获取锁的线程数
type spinLock struct { owner int count int } func (sl *spinLock) Lock() { me := GetGoroutineId() if spinLock .owner == me { // 如果当前线程已经获取到了锁,线程数增加一,然后返回 sl.count++ return } // 如果没获取到锁,则通过CAS自旋 for !atomic.CompareAndSwapUint32((*uint32)(sl), 0, 1) { runtime.Gosched() } } func (sl *spinLock) Unlock() { if rl.owner != GetGoroutineId() { panic("illegalMonitorStateError") } if sl.count >0 { // 如果大于0,表示当前线程多次获取了该锁,释放锁通过count减一来模拟 sl.count-- }else { // 如果count==0,可以将锁释放,这样就能保证获取锁的次数与释放锁的次数是一致的了。 atomic.StoreUint32((*uint32)(sl), 0) } } func GetGoroutineId() int { defer func() { if err := recover(); err != nil { fmt.Println("panic recover:panic info:%v", err) } }() var buf [64]byte n := runtime.Stack(buf[:], false) idField := strings.Fields(strings.TrimPrefix(string(buf[:n]), "goroutine "))[0] id, err := strconv.Atoi(idField) if err != nil { panic(fmt.Sprintf("cannot get goroutine id: %v", err)) } return id } func NewSpinLock() sync.Locker { var lock spinLock return &lock }
自旋锁的其他变种
1. TicketLock
TicketLock主要解决的是公平性的问题。
思路:每当有线程获取锁的时候,就给该线程分配一个递增的id,我们称之为排队号,同时,锁对应一个服务号,每当有线程释放锁,服务号就会递增,此时如果服务号与某个线程排队号一致,那么该线程就获得锁,由于排队号是递增的,所以就保证了最先请求获取锁的线程可以最先获取到锁,就实现了公平性。
可以想象成银行办理业务排队,排队的每一个顾客都代表一个需要请求锁的线程,而银行服务窗口表示锁,每当有窗口服务完成就把自己的服务号加一,此时在排队的所有顾客中,只有自己的排队号与服务号一致的才可以得到服务。
2. CLHLock
CLH锁是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,它不断轮询前驱的状态,如果发现前驱释放了锁就结束自旋,获得锁。
3. MCSLock
MCSLock则是对本地变量的节点进行循环。
4. CLHLock 和 MCSLock
都是基于链表,不同的是CLHLock是基于隐式链表,没有真正的后续节点属性,MCSLock是显示链表,有一个指向后续节点的属性。
将获取锁的线程状态借助节点(node)保存,每个线程都有一份独立的节点,这样就解决了TicketLock多处理器缓存同步的问题。
自旋锁与互斥锁
总结:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。