(编辑:jimmy 日期: 2025/1/5 浏览:2)
R语言介绍
R语言是用于统计分析,图形表示和报告的编程语言和软件环境。 R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发。
R语言的核心是解释计算机语言,其允许分支和循环以及使用函数的模块化编程。 R语言允许与以C,C ++,.Net,Python或FORTRAN语言编写的过程集成以提高效率。
R语言在GNU通用公共许可证下免费提供,并为各种操作系统(如Linux,Windows和Mac)提供预编译的二进制版本。
R是一个在GNU风格的副本左侧的自由软件,GNU项目的官方部分叫做GNU S.
R的演变
R语言最初是由新西兰奥克兰奥克兰大学统计系的Ross Ihaka和Robert Gentleman写的。 R语言于1993年首次亮相。
一大群人通过发送代码和错误报告对R做出了贡献。
自1997年年中以来,已经有一个核心组(“R核心团队”)可以修改R源代码归档。
R的特点
如前所述,R语言是用于统计分析,图形表示和报告的编程语言和软件环境。 以下是R语言的重要特点:
作为结论,R语言是世界上最广泛使用的统计编程语言。 它是数据科学家的第一选择,并由一个充满活力和有才华的贡献者社区支持。 R语言在大学教授并部署在关键业务应用程序中。 本教程将教您R编程与适当的例子在简单和容易的步骤。
前言
"color: #ff0000">Loess局部加权多项式回归
"color: #ff0000">LOESS平滑方法
"color: #ff0000">R语言代码
loess(formula, data, weights, subset, na.action, model = FALSE, span = 0.75, enp.target, degree = 2, parametric = FALSE, drop.square = FALSE, normalize = TRUE, family = c("gaussian", "symmetric"), method = c("loess", "model.frame"), control = loess.control(...), ...)
"na.action");
"htmlcode">
loess.control(surface = c("interpolate", "direct"), statistics = c("approximate", "exact"), trace.hat = c("exact", "approximate"), cell = 0.2, iterations = 4, ...)
"htmlcode">
predict(object, newdata = NULL, se = FALSE, na.action = na.pass, ...)
"color: #ff0000">实例
"color: #ff0000">数据
amplicon 测序数据,处理后得到的每个amplicon的深度,每个amplicon的GC含量,每个amplicon的长度
先用loess进行曲线的拟合
gcCount.loess <- loess(log(RC+0.01)~GC,data=RC_DT,control = loess.control(surface = "direct"),degree=2)
画出拟合出来的曲线
predictions1<- predict (gcCount.loess,RC_DT$GC) #plot scatter and line plot(RC_DT$GC,log(RC_DT$RC+0.01),cex=0.1,xlab="GC Content",ylab=expression(paste("log(NRC"["lib"],"+0.01)",sep=""))) lines(RC_DT$GC,predictions1,col = "red")
取残差,去除GC含量对深度的影响
#sustract the influence of GC resi <- log(RC_DT$RC+0.01)-predictions1 RC_DT$RC <- resi setkey(RC_DT,GC)
此时RC_DT$RC就是normalize之后的RC
画图显示nomalize之后的RC,并将拟合的loess曲线和normalize之后的数据保存
#plot scatter and line using Norm GC data plot(RC_DT$GC,RC_DT$RC,cex=0.1,xlab="GC Content",ylab=expression("NRC"["GC"])) gcCount.loess <- loess(RC~GC,data=RC_DT,control = loess.control(surface = "direct"),degree=2) save(gcCount.loess,file="/home/ywliao/project/Gengyan/gcCount.loess.Robject") predictions2 <- predict(gcCount.loess,RC_DT$GC) lines(RC_DT$GC,predictions2,col="red") save(RC_DT,file="/home/ywliao/project/Gengyan/RC_DT.Rdata")
当然,也想看一下amplicon 长度len 对RC的影响,不过影响不大
全部代码如下(经过修改,可能与上面完全匹配):
library(data.table) load("/home/ywliao/project/Gengyan/RC_DT.Rdata") RRC_DT <- RC_DT[Type=="WBC" & !is.na(RC),] lst <- list() for (Samp in unique(RC_DT$Sample)){ RC_DT <- RRC_DT[Sample==Samp] ####loess GC vs RC#### gcCount.loess <- loess(log(RC+0.01)~GC,data=RC_DT,control = loess.control(surface = "direct"),degree=2) predictions1<- predict (gcCount.loess,RC_DT$GC) #plot scatter and line #plot(RC_DT$GC,log(RC_DT$RC+0.01),cex=0.1,xlab="GC Content",ylab=expression(paste("log(NRC"["lib"],"+0.01)",sep=""))) #lines(RC_DT$GC,predictions1,col = "red") #sustract the influence of GC resi <- log(RC_DT$RC+0.01)-predictions1 RC_DT$NRC <- resi setkey(RC_DT,GC) #plot scatter and line using Norm GC data #plot(RC_DT$GC,RC_DT$NRC,cex=0.1,xlab="GC Content",ylab=expression("NRC"["GC"])) gcCount.loess <- loess(NRC~GC,data=RC_DT,control = loess.control(surface = "direct"),degree=2) predictions2 <- predict(gcCount.loess,RC_DT$GC) #lines(RC_DT$GC,predictions2,col="red") lst[[Samp]] <- RC_DT } NRC_DT <- rbindlist(lst) save(RC_DT,file="/home/ywliao/project/Gengyan/NRC_DT.Rdata") ####loess len vs RC### setkey(RC_DT,Len) len.loess <- loess(RC_DT$NRC~RC_DT$Len, control = loess.control(surface = "direct"),degree=2) predictions2<- predict (len.loess,RC_DT$Len) #plot scatter and line plot(RC_DT$Len,RC_DT$NRC,cex=0.1,xlab="Length",ylab=expression(paste("log(RC"["GC"],"+0.01)",sep=""))) lines(RC_DT$Len,predictions2,col = "red")
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。